
www.manaraa.com

Distributed Data Storage with Data Versioning

Lukáš Hejtmánek

Faculty of Informatics,
Masaryk University,

Botanická 68a, 602 00 Brno,
Czech Republic

xhejtman@mail.muni.cz

Abstract. In this paper, we demonstrate the concept of a distribut-
ed file system that supports file versioning, file sharing, and endless files
based on sliding window approach. It uses a distributed storage substrate
that provides immutable block allocations, and a metadata manager,
that maps files to data blocks using metadata. While file versioning and
read-write sharing are often understood as contradictory, we demonstrate
the approach that allows both properties to coexist. We have described
the application-level prototype implementation, that we use for verifying
this concept.

1 Introduction

The importance of versioning support is increasing for many classes of appli-
cations, as demonstrated by ever broader utilization of version control systems
like Concurrent Versioning System (CVS) [3], Subversion [4], or Adobe Version
Cue [1]. The distributed storage system described in this paper has three goals:
to support file versioning, file sharing and endless files as defined later in this
paper. An additional minor goal is to design the whole system without need for
distributed locking while still avoiding race conditions.

We have two basic motivations for the file versioning. First, it is appropriate
for lock-free design of the whole distributed system, because it avoids reader—
writer conflicts. The second motivation is the fact that we are able to track
history of changes to files and we are able to revert any changes. History tracking
support is not limited only to text files, such as source codes, but it also applies
to binary files such as images or even application-level metadata for other files.

The file sharing is usually natural requirement on a distributed file system.
While read-only sharing does not pose any problem, read-write file sharing con-
tradicts with file versioning by its common definitions. In this paper, we present
a relaxed definition of read-write file sharing, that allows designing and imple-
menting a system where both properties are available. Clearly, two distinct file
systems may be developed, one with file sharing and the other one with file ver-
sioning or the file versioning may be offloaded to application level. Traditional
file systems use static storage space allocation and therefore the storage capac-
ity has to be split in advance between the shared and versioned file systems.



www.manaraa.com

2

The application-level file versioning does not allow the data blocks to be shared
among the file versions. We overcome these issues by using block-based storage
system which enables us to allocate dynamic storage capacity. We show that the
proposed distributed file system is capable of combining these two features inside
a single directory structure and is capable of sharing the data blocks among the
file versions.

Significant motivation for the endless files support can be found in appli-
cations that produce large continuous data flows, such as security or industry
cameras recording and archiving. A common attribute of these use patterns is
the natural expiration of data in time—very few people are actually interested
in plain archive of such records and without expiration, such an archive would
also run out of storage space eventually. Thus a better approach is archiving the
interesting parts only, i.e. parts that someone has recognized, explicitly marked,
and for example put into separate archive; while the actual data is kept for
some limited amount of time only, for instance from now to a few hours in the
past. We still want to support both file versioning and endless files within one
file system but with a restriction that a single file may be either versioned or
endless; which means that versioned endless files are not supported. The endless
files are modified continuously and therefore it makes no sense to provide the
file versioning for these files.

As mentioned above, another goal is to develop a distributed framework
without requiring a distributed locking scheme. Utilization of append-only data
blocks enables us to build completely lock-free system as there is no need for any
distributed locking at storage level if data blocks may be written only once. The
lock-free storage substrate also allows introducing disconnected operations that
implicitly avoid starvation of locks and race conditions. An additional reason for
append-only data blocks is that write once—read many (WORM) media type
such as CD-R, DVD-R may be used for data blocks storage. This media type
is suitable for storing the data which must be guaranteed to be immutable like
auditing logs.

Another advantage of generic block storage substrate is its support for dy-
namic changes in storage size. New storage servers may be connected to increase
capacity. Existing servers may be disconnected to shrink the total capacity, after
the allocated data blocks are moved to the remaining servers if data loss is not
acceptable and the data is not available in redundant copies.

The rest of this paper is organized as follows. In Section 2, we define the
file versioning, the file sharing, and the endless files support more precisely and
analyze difficulties in combining such features together. In Section 3, we present
the proposed storage architecture from theoretical point of view and Section 4
discusses practical implementation, its properties and shortcomings. Section 5
briefs related storage and versioning systems, Section 6 discusses future direc-
tions of development of the presented system and Section 7 gives work summary
and concluding remarks.



www.manaraa.com

3

2 Principles of File Versioning and Data Sharing

2.1 File Versioning

We define file versioning as tracking history of changes to files, where each file
has a version, initially set to a default value and increased after changing the file.
After each version change, the file becomes immutable and changes are stored to
a new file of the same name but with increased version number. Users access the
last version of a file by default but they have tools to track history of changes
and to access previous versions of a file. Once the file is opened, user accesses
the particular version no matter how many new versions are created while the
file is open. The history of versions can be unlimited, so that the system keeps
all versions from an initial version to the current file, or it keeps only a limited
number of versions. Usually the system keeps n latest versions of a particular
file because of potentially huge history size unless WORM storage substrate is
used.

2.2 File Versioning with Data Sharing

We define file sharing as an ability to read and/or write from/to the same file
simultaneously. Read-only file sharing means that all users read particular file
simultaneously and none of them modifies the file. Read-write sharing means
that users can both read from and write to the file.

The novel approach presented in this paper is file sharing together with file
versioning based on immutable files, or on lower level, based on immutable block
storage. Read-only file sharing does not represent any problem, but immutable
files are contradictory with common read-write file sharing. Immutable files re-
quire that once a file is written, it will not be changed any more, while read-write
shared files require that a file can be changed and read arbitrarily. We combine
file versioning with immutable files so that immutable files can be modified by
creating a new version. We also allow for switching between read-write and ver-
sioned modes on an individual file, thus providing user with capability of creating
“virtual snapshots” of the shared file.

Read-write sharing can present various race condition conflicts. We decided
to offload solving of such conflicts into application level and it is up to clients to
negotiate non-conflicting sharing access patterns.

2.3 Endless Files

We define endless file as a file which is continuously appended, e.g. live stream
from camera. However, we have to limit such a file to avoid exceeding capacity
of storage servers. We support endless files via a sliding window mechanism,
which means that the beginning of such a file expires after some amount of time.
More precisely, endless file is a file, which can be read from some offset to the
actual file length and may not be versioned. The endless file is usually written
in append-only mode, but we allow accessing the file in full read-write mode
including shared read-write mode.



www.manaraa.com

4

3 Storage Architecture

Our distributed storage system consists of two parts. The first part is distributed
immutable storage substrate. The second part is a metadata manager that maps
files to storage substrate and organizes files into directories. The data storage
process is client driven, so that the client stores the data blocks to storage servers
and then creates metadata file which is sent to the metadata manager. In the case
of data retrieval, the client retrieves metadata file from metadata manager and
then directly communicates with the storage servers. This does not guarantee
that the client always accesses the very last version of a particular file. However,
primary goal of versioned files is not to handle such race conditions. If this poses
a problem for the client, shared files must be used instead or application-level
locking needs to by applied.

3.1 Storage Substrate

Our distributed storage system uses block-oriented immutable storage provided
by a group of servers that are known to clients through some service. Servers can
be connected and disconnected at any time. Providing immutable block oriented
storage means that the client can store only blocks of data that are immutable.
If the client needs to change the data, a new data block must be allocated on
a server. The client can request existing data blocks to be removed. Servers
do reference counting on blocks, that they provide, based on information from
clients and metadata manager. Thereafter, servers are able to decide whether
particular data block can be physically removed or whether it is still used.

3.2 Metadata Manager

The metadata manager, that maps data blocks into files, is a second important
part of our storage system. Metadata corresponds to I-node in UNIX-like file
systems including the fact that the file name is not a part of metadata itself.
In our system, metadata consists of identification of particular blocks which
comprises location of data block on storage server (includes identification of the
storage server and it is unique within the server) and a location of data block
in a file (i.e. its offset and length). Unlike metadata in UNIX-like file system,
we allow data blocks to be of arbitrary length, to overlap each other, and to be
redundant. We define redundancy as allowing multiple data blocks, that contain
the same data, to be mapped to the same offset of particular file.

The metadata manager maintains metadata, it maps metadata to file names
and it also provides directory structure. In order to provide this functionality,
the metadata manager offers the following basic operations that clients may use:

– Store. Clients store metadata on specified file path using this command.
– Retrieve. To retrieve metadata from specified file path.
– List. To retrieve names of directories and metadata files from specified path.



www.manaraa.com

5

– Remove. Using this command, the clients request particular metadata file
or directory to be removed. Metadata manager decreases reference count on
all participating data blocks on storage servers. If the object being removed
is a directory, then it must be empty.

– Update. For updating the content of a file, if file type supports updates.

3.3 File Versioning

As mentioned in the previous section, we assume immutable storage substrate,
which naturally leads to data versioning. When clients want to make changes to
their files consisting of data blocks, they must store the new data to the new data
blocks. These new data blocks may be assembled in the new metadata together
with old unmodified data blocks. At this point, the client has a new instance
of metadata describing a new version of particular file. Reference counters of
unmodified data blocks must be updated accordingly at the storage servers.

We need to define circumstances, under which a new version of a file is
created. There are two basic approaches [8]: (i) a new version is created after
each write to the file, or (ii) a new version is created after the file is closed. We
use the latter approach, which is a reasonable compromise between granularity
and size of the file history.

For two file versions u, v (u 6= v), we define relation (u, v) which means that
file version v is derived from version u and there does not exist w1, . . . , wn such
that (u, w1), . . . , (wn, v), and there does not exist w and ∃v1, . . . , vn such that
(w, v1), . . . , (vn, w), i.e. relations do not contain cycles. Let s be an initial file
version, then for any file version v ∃v1, . . . , vn such that (s, v1), . . . , (vn, v). We
can build version tree such that when u, v holds (u, v), u is direct predecessor
of v in the tree. The root of such a tree corresponds to the initial file version.
The depth of particular branch in tree represents number of changes to the file
from the initial version to some particular version. We denote the set of last
file versions as a set of leafs in a version tree. We can order the set of last file
versions according to the file creation time. We denote the latest version as the
version from the set of last file versions with the highest creation time.

We may want to limit the number of file versions. Therefore, we need to define
which file versions are obsolete and can be removed. The most straightforward
method, we can think of, is again to order file versions according to creation
time and to keep only the n latest versions. Another possible method is to keep
minimal subtree having at least n versions including the latest version. Using
this method, we can mark a file obsolete, even if according to the time ordering
the file is just behind the latest version. Using the former method, we can split
version tree into forest (i.e. group of trees) and this can happen in the case that
we mark obsolete a file version from which more then one new versions were
derived. We decided to use the former method as it is easier to implement.

3.4 File Sharing

Within scope of this section, we use term file sharing as a shorthand for read-
write file sharing. On one hand, we want a file modification to create a new file,



www.manaraa.com

6

but on the other hand, we want to be able to do parallel and multiple changes
to a single file that is viewed by other clients. One of the possible ways to
solve this dilemma is to divide files into shared and versioned, otherwise we lose
file versioning semantics or file sharing semantics. Then a mechanism is needed
to convert a versioned file into a shared file and vice versa. When we convert
a versioned file into the shared file, we clone metadata of specified file version
and we mark this file as shared. From this point on, we see the versioned file
and the shared file as two independent files, which have the same content at
the beginning. When we convert a shared file into the versioned file, we clone
metadata of particular shared file and we create a new latest version from this
shared file. From this point, the versioned file is immutable and it is further
independent of its shared version, i.e. any change made into the shared file is not
projected into the versioned file after the conversion. As we mentioned above,
this approach can be used for creating snapshots of shared files and since we
only clone metadata, which means that unmodified blocks are shared between
versioned and shared file, this is a space-efficient approach.

3.5 Endless Files Support

We represent endless files using the sliding window approach. The window has
a beginning o and its length is l. Client can read data anywhere in range 〈o, o+l〉.
At a time Ti, we have a window 〈oi, oi+l〉. At a time Ti+1, client appends a bytes
and we have a window 〈oi + a, oi + a + l〉. We need to define how we represent
offset in this file from client’s point of view.

If the client uses an absolute offset, we may run out of range of the variable
representing the offset at some instant, as an endless file has potentially infinite
offset and we are able to represent finite numbers only. Another problem with
the absolute offset is that clients may get confused when accessing range 〈0, o〉.
Read access in this range does not have to be interpreted as an access fault, but
in that case the client may make a wrong assumption that the file is corrupted
for example. If we allow endless files to be supported not solely in append-only
mode but also in writing mode in general, then write access in the range 〈0, o〉
results in data loss as blocks expire immediately in this range.

If clients use offset relative to o (i.e. beginning of sliding window), there is
a problem that the meaning of the offset changes with time. Consequently two
clients are unable to synchronize themselves to a particular absolute offset.

We decided to use combination of both cases. The offset provided by the
client is relative to defined fixed point of the client, which is implicitly zero and
may be copied from the current value of o. This allows to avoid clients confusion
from empty beginning of the file but it also allows clients to get synchronized
through an absolute offset if necessary.

An endless file cannot be converted into a versioned file, at the data blocks
of endless file expire, meaning that parts of corresponding versioned file would
also expire and thus it would not be immutable. Clients may use classical copy
command to create a versioned file from an endless file or its part but the classical
copy does not allow sharing of data blocks among files.



www.manaraa.com

7

4 Practical Implementation

4.1 Storage Substrate

Practical implementation of storage substrate is based upon network storage
stack [2], which offers block oriented storage and is able to store byte arrays
in the append-only mode. A part of network storage stack called the ExNode
library collects allocated byte arrays to XML metadata file (corresponding to
UNIX I-node). Using this ExNode library, clients can store and retrieve files
to/from the IBP infrastructure. The IBP storage stack does not contain any
metadata manager.

We have developed the libxio library, that provides standard UNIX I/O ab-
straction on top of the IBP storage stack. The initial version of this library [5]
does not use any metadata manager and stores metadata files to client’s local file
system. The library uses special URI for accessing files instead of pure file name
in the open(2) system call and this approach allows users to pass per-file options
when accessing it. A part of the special URI is file access mode: versioned mode
(by default), shared mode, or endless mode.

4.2 Metadata Manager

Metadata manager is a newly developed part of our distributed storage. The ini-
tial implementation does not contain distributed metadata manager but rather
centralized for the sake of implementation simplicity. Together with libxio, it
provides an application-level distributed file system; in the future we assume
using a Linux kernel module for providing transparent file system.

Our initial implementation of the metadata manager does not implement full
delete operation. If user requests a file to be deleted, only metadata is actually
removed. Data blocks are not freed, which allows guaranteeing that data blocks
are available to clients that opened the file before delete request and haven’t
closed it yet. Removing metadata means that the file cannot be re-opened which
meets expected behavior. Such an approach requires an additional garbage col-
lector. We use the garbage collector, which is a part of the IBP stack and frees
the data blocks after certain amount of time called expiration period.

Metadata manager maintains directory structure and file names of files de-
scribed by metadata in a local file system. For example, when the client wants
to store the file /test/test1/test.txt, metadata manager creates the directory
/test/test1 on its local file system, where file with metadata named test.txt is
stored.

File Versioning We said that metadata manager stores metadata according to
its file path and file name. This approach needs to be enhanced to store versioned
files. We have chosen the approach where every version of metadata is stored
to a separate file on metadata manager. Therefore, metadata manager creates
directory even for an individual file name and it stores individual file versions
into this directory. This approach is demonstrated in Figure 1, where versioned



www.manaraa.com

8

files test1 and test2 stored in the directory tmp are shown. We store version
number of the predecessor for every file, an initial version has nil predecessor.
This enables maintenance of version trees.

/tmp/ /tmp/ test1/

test2/

1

2

1

2

3

test1;1

test1;2

test2;1

test2;2

test2;3

Fig. 1. Versioning representation. Sharp boxes represent directories, while round boxes
represent individual files. Logical view is shown on the left side and physical view is on
the right side.

We allow users to access any version of a file in both read and write modes.
The retrieve command delivers the last version of the file if a version specification
has been omitted and the specified version otherwise. The store command does
not support version specification and always stores a file as a new version with
the lowest unused version number. If the client accesses a particular file version
in read-write mode, the reads are done from that particular file but writes are
performed in a new version after the file is closed. Files in this mode can be
accessed asynchronously, i.e. it is possible to use prefetch and a write-back cache.

File Versioning with Data Sharing We store versioned files by default. If
we convert a versioned file into the shared file, we copy versioned metadata into
the shared subdirectory. E.g. if we convert the file /tmp/test1/2 into a shared
file then we copy this file into file /tmp/test1/shared/2. This means that any file
version can be shared only once and then it must be unshared before new sharing
is possible. Unsharing copies the shared metadata into a new latest version of
the file.

We need to provide more operations to the metadata manager to be able to
handle shared files together with versioned files, namely operations for changing
file mode (i.e. shared or versioned) and an operation for creating file with mode
different than the default one (e.g. shared in our case).

For shared files, clients are required to fetch actual metadata before reading
data blocks from storage servers, meaning that files are accessed synchronously.
This may pose performance problems as the client must read and parse meta-
data file before reading data block. This can be sped up by introducing serial
numbers in metadata, which are increased by every metadata change. In such a



www.manaraa.com

9

case, metadata manager can be extended with another operation for retrieving a
metadata serial number, and the client just compares serial numbers instead of
fetching and interpreting metadata. Another performance improvement is pos-
sible using big-enough size of a data block. A client is requested to store actual
metadata to metadata server after it performs a set of write operations that
produce a new data block.

Endless Files In the case of endless files, the metadata manager needs to pro-
vide an update operation that is atomic. The metadata manager stores metadata
for particular file on single server, which allows the metadata manager to guar-
antee the atomicity of the operation without the need for global distributed
locking.

As we said, we use offsets relative to some fixed point, by default set to zero.
For offsets we use variable type of size 64 bits, which seems to be enough as
64 bits may overflow after about 200 years if continuous storing is done at the
rate of 20Gbps.

Another problem is representation of metadata. We keep information about
offsets and length of data blocks and we have two possibilities here. We can
store absolute offset of data blocks, which is limited by variable type used, or
we may store relative offset of blocks (relative to offset o). The second case
requires updating offsets of all data blocks in metadata, after the data block at
the beginning has expired, and thus we have decided to use absolute offsets.

5 Preliminary Tests

Our preliminary testbed consists of two network setups: performance tests over
the short distance (local area) network and over the long distance (wide area)
network. In both cases, we use servers based on Pentium 4@2.4GHz proces-
sor, 1GB RAM, 1 Gbps NIC (Intel). The server used for metadata manager is
equipped with 8 SCSI disks (73GB each) assembled in hardware RAID 5 array
(Adaptec 2200S ASR card). The servers used for IBP data storage are equipped
with 8 to 10 SATA disks (250GB each) assembled in hardware RAID 5 array
(3ware Escalade cards). All clients are using a stock ATA disk.

In the short distance (local area) network setup, we were able to achieve
930Mbps data transfer rate over a single TCP connection and 950Mbps data
transfer rate over an UDP connection, both measured with the iperf [6] tool.
The corresponding data rates for long distance (wide area—in our case distance
of 300km) network were 220Mbps for a single TCP stream with 2MB TCP
window and 930Mbps for a single UDP stream.

We use the modified tar program to extract files into IBP depots using our
metadata manager. We probe our system behavior using four types of files:

– File of 500MB size to test medium size files.
– File of 10 kB size to test small size files.
– File of 0 kB size to test metadata manager itself.



www.manaraa.com

10

– Linux kernel sources to duplicate real usage pattern including directories.

The Linux kernel sources contain 19000 files in 1200 directories of total size
218MB. Since a file of size 10 kB and 0 kB is transferred too fast, we probed
1000 files of size 10 kB stored into a single tar archive and 10000 files of size 0 kB
also stored into a single tar archive.

We choose the NFS file system as the reference although it uses UDP data-
grams instead of TCP stream by default (IBP is TCP based). The IBP can use
many storage servers while NFS v3 is unable to use multiple storage servers.

We can see performance of the transfers in the table 1. In the case of medium
sized file, NFS and IBP are quite comparable, although using our experimental
IBP stack 1, we are able to achieve time around 9 seconds for 500MB file in both
the local and the wide area setup. We have not implemented this experimental
IBP stack into libxio yet but we believe there is a great performance poten-
tial. In the case of 10 kB files, NFS seems to be quite better than our system
using IBP over a local area connection while IBP is slightly better over a wide
area connection. We believe that a better IBP stack could help to achieve bet-
ter performance. Also our system does not provide any local write back cache,
each operation is synchronous. The 0 kB files show performance of our meta-
data manager compared to NFS’s ability to create empty files. NFS seems to be
slightly better than our metadata manager over a local area connection while our
metadata manager is slightly better over a wide area connection. However, our
initial implementation of the metadata manager is not highly speed-optimized.
In the case of the Linux kernel sources, we can see that our system is compa-
rable to NFS in both cases but the result for multiple storage systems clearly
demonstrates the potential of parallel processing.

File type Local connection Wide connection 8 IBP servers

500 MB NFS 21.4sec 23.7sec
186 Mbps 168 Mbps

IBP 19sec 18.9sec 16sec
210 Mbps 211 Mbps 250 Mbps

10 kB NFS 2.2sec 52.9 sec
36 Mbps 1.5 Mbps

IBP 45sec 44.1 sec 42sec
1.7 Mbps 1.8 Mbps 1.9 Mbps

0 kB NFS 18.8sec 4min 51.9sec
IBP 29sec 2min 37.3sec

Linux kernel NFS 6min 28sec 23min 3.5sec
4.5 Mbps 1.2 Mbps

IBP 8min 59sec 23min 29sec 8min 59sec
3.2 Mbps 1.2 Mbps 3.2 Mbps

Table 1. File transfer time

1 Our experimental and simplified reimplementation of the original IBP stack



www.manaraa.com

11

In the table 2, we can see amount of disk storage needed for metadata and
data. The metadata manager stores metadata into a directory structure. We
archived this structure using tar and then count the size of each uncompressed
archive.

500 MB file 1000 10 kB files 10000 0 kB files Linux kernel sources

Metadata size 60 kB 3MB 20MB 56MB
Data size 500 MB 10MB 0MB 218 MB

Table 2. Data and Metadata size

6 Related Work

There are many general-purpose networked or distributed file systems such as
NFS [11], DFS [9], AFS [10], and others, but there are only few systems that
hit our target features. The Eliot [12] file system is built on top of immutable
peer-to-peer storage. It uses immutable peer-to-peer substrate together with a
metadata service that handles the mutable parts of the file system (i.e. inodes,
symlinks, directories). The Eliot file system provides either a NFS or AFS-like
interface and it tends to be a generic file system supporting neither the file
versioning nor the endless files.

Versioned file system was introduced in OpenVMS file system Files-11 [13].
This file system is neither distributed nor networked and it uses simple versioning
scheme—after each write operation, a new file version is created. The number
of versions is limited. An upcoming database based file system from Microsoft—
WinFS [14] should support file versioning. This file system is proprietary and
had not been finished yet, therefore no more details are known to the author.
Our system supports not only file versioning, but also immutable substrate and
endless files.

Application-level versioned file systems are widely used mainly by software
developer community, based on tools like CVS [3], SubVersion [4], or Microsoft
Visual SourceSafe [7]. CVS system is used mainly for text files, it supports
versioning trees, it can automatically merge conflicting updates. Subversion is
another versioning tool similar to the CVS, inheriting most of the features from
CVS and adding a few others such as versioning of directories, file renaming and
metadata versioning. MS SourceSafe is again a similar tool on commercial basis.
Until recently, the versioning was not widespread beyond software developer
and scientific community—but now tools like Adobe VersionCue [1] working with
images or binary files in general are available to completely different communities
such as graphics designers.

File systems and tools supporting file versioning do not support file sharing.
There is no file system known to the author that supports both file sharing and



www.manaraa.com

12

file versioning. Also there is no file system known to the author has even the
endless files support.

7 Future Work

Our further work will be oriented primarily on enhancing the metadata man-
ager. We are focusing on developing a fully distributed version of the metadata
manager using a distribution function, which stores a particular file to a partic-
ular metadata server, possibly with redundancy support. Further enhancement
will be in using a dynamic distribution function that allows us to connect and
disconnect servers with running metadata managers. As discussed above, the
metadata manager does not support operations such as full delete or rename
and we want to add support for these operations while still preserving lock-free
characteristics of whole system.

As mentioned in the Introduction, the lock-free designing allows for straight-
forward accommodation of disconnected operations and we aim to add discon-
nected operations support in future versions. For easier access to the data on
our storage system, support for this distributed framework needs to be imple-
mented into the operating system kernel, so that users could access data through
ordinary file system interface transparently.

We know that any resilient distributed system that allows connecting and
disconnecting storage servers needs to support redundancy, meaning that data
from a single files is replicated across multiple storage servers. Our further re-
search will be the support for voluntary data redundancy for both robustness
and performance reasons.

8 Conclusions

In this paper, we are demonstrating the concept of distributed file system that
supports file versioning, read-write file sharing, and endless files based on slid-
ing window approach. It is based on distributed storage substrate providing
immutable block allocations, and metadata manager, that maps files to data
blocks using metadata and maintains directory structure. While file versioning
and read-write sharing is often understood as contradictory, we demonstrate the
approach that allows both properties to coexist. We demonstrate the idea of the
endless files that could have a great potential for scientific and multimedia appli-
cations. We have described the application-level prototype implementation, that
we use for verifying this concept. Prototype implementation is based on network
storage stack and libxio library. While the prototype is already usable now, we
envision a great potential for future development of the whole system.

Acknowledgments

This research is supported by a research intent “Optical Network of National
Research and Its New Applications” (MŠM 6383917201) and by CESNET Devel-



www.manaraa.com

13

opment Fund project 172/2005. We would also like to thank to Luděk Matyska
and Petr Holub for kindly supporting our work and for stimulating discussions.

References

1. Adobe Version Cue.
http://www.adobe.com/products/creativesuite/versioncue.html.

2. M. Beck, T. Moore, and J. S. Planck. An end-to-end approach to globally
scalable network storage. In SIGCOMM’02, 2002.

3. B. Berliner and J. Polk. Concurrent Versions System (CVS), 2001.
http://www.cvshome.org.

4. Ben Collins-Sussman, Brian W. Fitzpatrick, and C. Michael Pilato. Version
Control with Subversion, 2004.
http://svnbook.red-bean.com/en/1.0/svn-book.html.

5. Lukáš Hejtmánek and Petr Holub. IBP deployment tests and integration with
DiDaS project. Technical report, Cesnet, December 2003.
http://www.cesnet.cz/doc/techzpravy/2003/ibpdidas/.

6. Iperf. http://dast.nlanr.net/Projects/Iperf.
7. Microsoft Visual SourceSafe.

http://msdn.microsoft.com/vstudio/previous/ssafe.
8. Kiran-Kumar Muniswamy-Reddy, Charles P. Wright, Andrew Himmer, and Erez

Zadok. A Versatile and User–Oriented Versioning File System. In The Third

USENIX Conference on File and Storage Technologies, 2004.
http://www.fsl.cs.sunysb.edu/docs/versionfs-fast04.

9. Open Group DCE. http://www.opengroup.org/dce/.
10. Mahadev Satyanarayanan. Scalable, Secure, and Highly Available Distributed

File Access. In IEEE Computer, volume 23, pages 9–21, May 1990.
http://www-2.cs.cmu.edu/afs/cs/project/coda-www/ResearchWebPages/

docdir/scalable90.pdf.
11. S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M. Eisler, and

D. Noveck. Network File System (NFS) version 4 Protocol, April 2003.
http://www.zvon.org/tmRFC/RFC3530/Output/index.html.

12. C. Stein, M. Tucker, and M. Seltzer. Building a Reliable Mutable File System on
Peer-To-Peer Storage. In Proceedings of the 21st IEEE Symposium on Reliable

Distributed Systems, 2002. http://citeseer.ist.psu.edu/557574.html.
13. Files-11, OpenVMS. http://en.wikipedia.org/wiki/OpenVMS_filesystem.
14. WinFS. http://msdn.microsoft.com/data/winfs/.


